Recommendation Engines

Täpsustused:
Autor: Michael Schrage
Lehekülgede arv: 296
Ilmumisaasta: 2020
Kauba ID: 17701354
TASUTA TARNE al 20 €
2270
Lisa korvi
Sinu linn

Omniva pakiautomaat

10. jaanuarist

TASUTA TARNE al 20 €
000

Smartpost pakiautomaat

10. jaanuarist

TASUTA TARNE al 20 €
000

Postkontor

10. jaanuarist

TASUTA TARNE al 20 €
000

Kuller

10. jaanuarist

399

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

Omniva pakiautomaat

10. jaanuarist

TASUTA TARNE al 20 €
000

Smartpost pakiautomaat

10. jaanuarist

TASUTA TARNE al 20 €
000

Postkontor

10. jaanuarist

TASUTA TARNE al 20 €
000

Kuller

10. jaanuarist

399

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

  • 95% ostjatest soovitaks seda müüjat.

Teised on vaadanud

Toote kirjeldus: Recommendation Engines

"How does Netflix know just what to suggest you watch next? How does Amazon determine what a "customer like you" has also purchased? The answer is recommender systems, the technological concept that lies at the heart of most of the successful companies in the digital economy. Michael Schrage starts with the origins of recommender systems, which go back further than you think (see: the Oracle at Delphi for one of history's earliest recommenders), and a history of the first companies to harness recommendations. He then discusses the technology behind how recommenders work: the AI and machine learning algorithms that power these recommender platforms. Next he discusses the role of user experience, and how recommender systems are designed, and how design choices function as nudges to make certain recommendations more salient than others. He explores three case studies: Spotify, Bytedance, and Stitch Fix, looking at how recommenders can create new business solutions and how algorithms can go beyond curation to content creation. The concluding chapter on the future of recommender systems is perhaps the most enlightening. Moving away from technology and business, Schrage embraces the philosophical, probing the role of free will in a world mediated by recommender systems (a recommendation inherently offers a choice; without the element of choice, any digital manipulation of our preferences cannot truly be called a "recommendation"), and exploring the role of recommender systems as a means of improving the self. In the vein of Free Will, this book presents the essential information while revealing the author's point of view. Schrage wants to push our understanding of recommender systems beyond the technological, to understand what societal role they play and whatopportunities they offer now and in the future".
How companies like Amazon and Netflix know what you might also like the history, technology, business, and social impact of online recommendation engines.Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences you might also like. Schrage offers a history of recommendation that reaches back to antiquity's oracles and astrologers; recounts the academic origins and commercial evolution of recommendation engines; explains how these systems work, discussing key mathematical insights, including the impact of machine learning and deep learning algorithms; and highlights user experience design challenges. He offers brief but incisive case studies of the digital music service Spotify; ByteDance, the owner of TikTok; and the online personal stylist Stitch Fix. Finally, Schrage considers the future of technological recommenders: Will they leave us disappointed and dependent or will they help us discover the world and ourselves in novel and serendipitous ways?

Üldine tooteinfo: Recommendation Engines

Kauba ID: 17701354
Kategooria: Ühiskonnateemalised raamatud
Tootepakendite arv: 1 tk.
Paki suurus ja kaal (1): 0,3 x 0,3 x 0,1 m, 0,2 kg
Kirjastus: MIT Press Ltd
Raamatu keel: Inglise keel
Tüüp: Sotsiaalteaduste raamatud
Autor: Michael Schrage
Lehekülgede arv: 296
Ilmumisaasta: 2020

Toodete pildid on illustratiivsed ja näitlikud. Tootekirjelduses sisalduvad videolingid on ainult informatiivsetel eesmärkidel, seega võib neis sisalduv teave erineda tootest endast. Värvid, märkused, parameetrid, mõõtmed, suurused, funktsioonid, ja / või originaaltoodete muud omadused võivad nende tegelikust väljanägemisest erineda, seega palun tutvuge tootekirjeldustes toodud tootespetsifikatsioonidega.

Partnerite pakkumised
Reklaam

Hinnangud ja arvustused (0)

Recommendation Engines
Jäta esimene arvustus!
Toote hindamiseks pead olema sisse logitud ja toote Kaup24.ee e-poest eelnevalt ka ostnud.
Hinda toodet

Küsimused ja vastused (0)

Küsi toote kohta teistelt ostjatelt!
Esita küsimus
Teie küsimus on edukalt saadetud. Sellele küsimusele vastatakse 3 tööpäeva jooksul
Küsimus peab olema vähemalt 10 tähemärki

Soovitame osta koos: Recommendation Engines


Parimad pakkumised müüjalt Bookstore Krisostomos