1

Panel Methods for Finance: A Guide to Panel Data Econometrics for Financial Applications

Täpsustused:
Autor: Marno Verbeek
Lehekülgede arv: 296
Ilmumisaasta: 2021
Kauba ID: 16329949
  • Täishind
  • Maksa osade kaupa 757 x 9 kuus
5725
5725
757 / kuus
või
3 1909
Ilma lisatasudeta
Lisa korvi
Sinu linn

Omniva pakiautomaat

14. maist

000

SmartPosti pakiautomaat

14. maist

000

Postkontor

14. maist

000

Kuller

14. maist

399

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

Omniva pakiautomaat

14. maist

000

SmartPosti pakiautomaat

14. maist

000

Postkontor

14. maist

000

Kuller

14. maist

399

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

  • 95% ostjatest soovitaks seda müüjat.

Teised on vaadanud

Toote kirjeldus: Panel Methods for Finance: A Guide to Panel Data Econometrics for Financial Applications

De Gruyter Studies in the Practice of Econometrics is a new series of books aimed at researchers showing how different econometric techniques can be used in their field focusing on practical relevance. Critical reviews of existing approaches are combined with expert advice.
Financial data are typically characterised by a time-series dimension and a cross-sectional dimension. For example, we may observe financial information on a group of firms over a number of years, or we may observe returns of all stocks traded at NYSE over a period of 120 months. Accordingly, econometric modelling in finance requires appropriate attention to these two -- or occasionally more than two -- dimensions of the data. Panel data techniques are developed to do exactly this. This book provides an overview of commonly applied panel methods for financial applications. The use of panel data has many advantages, in terms of the flexibility of econometric modeling and the ability to control for unobserved heterogeneity. It also involves a number of econometric issues that require specific attention. This includes cross-sectional dependence, robust and clustered standard errors, parameter heterogeneity, fixed effects, dynamic models with a short time dimension, instrumental variables, differences-in-differences and other approaches for causal inference. After an introductory chapter reviewing the classical linear regression model with particular attention to its use in a panel data context, including several standard estimators (pooled OLS, Fama-MacBeth, random effects, first-differences, fixed effects), the book continues with a more elaborate treatment of fixed effects approaches. While first-differencing and fixed effects estimators are attractive because of their removal of time-invariant unobserved heterogeneity (e.g. manager quality, firm culture), consistency of such estimators imposes strict exogeneity of the explanatory variables (for a finite number of time periods). This is often violated in practice, for example, some explanatory variable explaining firm performance may be partly determined by historical firm performance. An obvious case where this assumption is violated arises when the model contains a lagged dependent variable. A separate chapter will focus on dynamic models, which have received specific attention in the literature, also in the context of financial applications, like the dynamics of capital structure choices. Estimation mostly relies on instrumental variables or GMM techniques. Identification and estimation of such models is often fragile, and the small sample properties may be disappointing. The book continues with a chapter on models with limited dependent variables, including binary response models. The cross-sectional dependence that is likely to be present complicates estimation, and the author discusses pooled estimation, random effects and fixed effects approaches, including the possibility to include lagged dependent variables. This chapter will also discuss problems of attrition and sample selection bias, as well as unbalanced panels in general. Identifying causal effects in empirical work based on non-experimental data is often challenging, and causal inference has received substantial attention in the recent literature. The availability of panel data plays an important role in many approaches. Starting with simple differences-in-differences approaches, a dedicated chapter discusses instrumental variables estimators, matching and propensity scores, regression discontinuity and related approaches.

Üldine tooteinfo: Panel Methods for Finance: A Guide to Panel Data Econometrics for Financial Applications

Kauba ID: 16329949
Kategooria: Majandusalased raamatud
Tootepakendite arv: 1 tk.
Paki suurus ja kaal (1): 0,03 x 0,16 x 0,24 m, 0,3 kg
Kirjastus: De Gruyter
Raamatu keel: Inglise keel
Kaane tüüp: Pehme
Vorming: Traditsiooniline raamat
Tüüp: Majandusteadus
Raamat väljavõttega: Ei
Autor: Marno Verbeek
Lehekülgede arv: 296
Ilmumisaasta: 2021

Toodete pildid on illustratiivsed ja näitlikud. Tootekirjelduses sisalduvad videolingid on ainult informatiivsetel eesmärkidel, seega võib neis sisalduv teave erineda tootest endast. Värvid, märkused, parameetrid, mõõtmed, suurused, funktsioonid, ja / või originaaltoodete muud omadused võivad nende tegelikust väljanägemisest erineda, seega palun tutvuge tootekirjeldustes toodud tootespetsifikatsioonidega.

Partnerite pakkumised
Reklaam

Hinnangud ja arvustused (0)

Panel Methods for Finance: A Guide to Panel Data Econometrics for Financial Applications
Jäta esimene arvustus!
Toote hindamiseks pead olema sisse logitud ja toote Kaup24.ee e-poest eelnevalt ka ostnud.
Hinda toodet

Küsimused ja vastused (0)

Küsi toote kohta teistelt ostjatelt!
Esita küsimus
Teie küsimus on edukalt saadetud. Sellele küsimusele vastatakse 3 tööpäeva jooksul
Küsimus peab olema vähemalt 10 tähemärki

Soovitame osta koos: Panel Methods for Finance: A Guide to Panel Data Econometrics for Financial Applications


Parimad pakkumised müüjalt Bookstore Krisostomos