1

Machine Learning: A Bayesian and Optimization Perspective 2nd edition

Täpsustused:
Autor: Sergios Theodoridis
Lehekülgede arv: 1160
Ilmumisaasta: 2020
Kauba ID: 16251004
  • Täishind
  • Maksa osade kaupa 800 x 18 kuus
10431
10431
800 / kuus
või
3 3477
Ilma lisatasudeta
Pakkumised teistelt müüjatelt (1):
12375
Lisa korvi
Sinu linn

Omniva pakiautomaat

27. maist

000

SmartPosti pakiautomaat

27. maist

000

Unisend pakiautomaat

27. maist

000

Postkontor

27. maist

000

Kuller

27. maist

599

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

Omniva pakiautomaat

27. maist

000

SmartPosti pakiautomaat

27. maist

000

Unisend pakiautomaat

27. maist

000

Postkontor

27. maist

000

Kuller

27. maist

599

Tähelepanu! Tarneajad on esialgsed ning selguvad pärast tellimuse vormistamist ja tasumise aega. Lõplik tarnekuupäev on märgitud tellimuse kinnituses.

Pakkumised teistelt müüjatelt
EasyShop
12375
  • 95% ostjatest soovitaks seda müüjat.

Teised on vaadanud

Toote kirjeldus: Machine Learning: A Bayesian and Optimization Perspective 2nd edition

Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes.

Üldine tooteinfo: Machine Learning: A Bayesian and Optimization Perspective 2nd edition

Kauba ID: 16251004
Kategooria: Majandusalased raamatud
Tootepakendite arv: 1 tk.
Paki suurus ja kaal (1): 0,03 x 0,19 x 0,24 m, 2,35 kg
Kirjastus: Elsevier Science Publishing Co Inc
Raamatu keel: Inglise keel
Kaane tüüp: Pole informatsiooni
Vorming: Traditsiooniline raamat
Tüüp: Täpsustamata
Raamat väljavõttega: Ei
Autor: Sergios Theodoridis
Lehekülgede arv: 1160
Ilmumisaasta: 2020

Toodete pildid on illustratiivsed ja näitlikud. Tootekirjelduses sisalduvad videolingid on ainult informatiivsetel eesmärkidel, seega võib neis sisalduv teave erineda tootest endast. Värvid, märkused, parameetrid, mõõtmed, suurused, funktsioonid, ja / või originaaltoodete muud omadused võivad nende tegelikust väljanägemisest erineda, seega palun tutvuge tootekirjeldustes toodud tootespetsifikatsioonidega.

Partnerite pakkumised
Reklaam

Hinnangud ja arvustused (0)

Machine Learning: A Bayesian and Optimization Perspective 2nd edition
Jäta esimene arvustus!
Toote hindamiseks pead olema sisse logitud ja toote Kaup24.ee e-poest eelnevalt ka ostnud.
Hinda toodet

Küsimused ja vastused (0)

Küsi toote kohta teistelt ostjatelt!
Esita küsimus
Teie küsimus on edukalt saadetud. Sellele küsimusele vastatakse 3 tööpäeva jooksul
Küsimus peab olema vähemalt 10 tähemärki

Soovitame osta koos: Machine Learning: A Bayesian and Optimization Perspective 2nd edition

Pakkumised teistelt müüjatelt (1)

*Konkreetse Müüja pakkumiste suhtes kehtivad tingimused, mis on Müüja määranud antud kauba jaoks ja kogu kaubas sisalduva teabe (sealhulgas ka hinna) eest vastutab Müüja.

Müüja: EasyShop 4.4
(1014 ostja hinnangud)

Omniva pakiautomaat

15. maist

000
Võimalikud tarneviisid
12375

Parimad pakkumised müüjalt Bookstore Krisostomos