Autor: | John Stillwell |
Lehekülgede arv: | 250 |
Ilmumisaasta: | 2022 |
Kauba ID: | 17055284 |
This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Kauba ID: | 17055284 |
Kategooria: | Majandusalased raamatud |
Tootepakendite arv: | 1 tk. |
Paki suurus ja kaal (1): | 0,3 x 0,3 x 0,1 m, 0,2 kg |
Kirjastus: | Cambridge University Press |
Raamatu keel: | Inglise keel |
Tüüp: | Täpsustamata |
Autor: | John Stillwell |
Lehekülgede arv: | 250 |
Ilmumisaasta: | 2022 |
Toodete pildid on illustratiivsed ja näitlikud. Tootekirjelduses sisalduvad videolingid on ainult informatiivsetel eesmärkidel, seega võib neis sisalduv teave erineda tootest endast. Värvid, märkused, parameetrid, mõõtmed, suurused, funktsioonid, ja / või originaaltoodete muud omadused võivad nende tegelikust väljanägemisest erineda, seega palun tutvuge tootekirjeldustes toodud tootespetsifikatsioonidega.